Erratum

J. F. Gieras, "Permanent Magnet Motor Technology", third edition

Taylor & Francis - CRC-Press, 2010, ISBN 978-1-4200-6440-7

Page	Error	Should be
50	4^{th} line below eqn (2.14) in Section 8.8.5.	in Section 8.10.5
132	Last bullet: "the stray load losses"	"the additional losses"
132	Eqn (4.21) $\Delta P_{str} \approx 0.01 P_{out}$	$\Delta P_{ad} \approx 0.01 P_{out}$
164	Table 4.6	Remove "height" from the top left corner
179	Eqn (5.28): $k_{aq} = k_{fd}/k_f$	$k_{aq} = k_{fq}/k_f$
188	Upper part of Fig 5.9	Better quality printing is necessary
200	3^{rd} line below eqn (5.63): (Fig. 5.11)	(Fig. 5.13)
201	Eqn (5.66): $C_V = 2k_{ocf}k_{fd}(1+\epsilon)/\pi^2\xi$	$C_V=2k_{ocf}k_fk_{fd}(1+\epsilon)/\pi^2\xi$, see also page 215
203	Eqn (2.80): $\psi_f = L_{fd} I_f$	$\psi_f = L_{ad}i_{ad} + (L_{ad} + L_{lf})I_f + L_{ad}i_D$
		where L_{lf} is the leakage inductance of the fictitious field excitation
		winding
204	2^{nd} paragraph "where L_{fd} is the maximum"	"where $L_{fd} = L_{ad} + L_{lf}$ is the maximum"
218	1^{st} equation below Fig. 5.20: t_{s1}	Should be t_1 , see Appendix A, eqn (A.27)
218	2^{nd} equation from the bottom: Missing frequency f in	9.338 Ohm instead of 9.10 Ohm
	equation for X_{ad}	
218	Last equation for X_{sq}	Should be $X_{aq} = \dots$
218	(0.966/1.041)9.10 = 9.81	(1.041/0.966)9.10 =9.81
219	Latex error: (aa-slotoval)	$(ref{aa-slotoval})$ Eqn. (A.16) has been labeled as $ref{aa-slotoval}$.
219	Equation for λ_{Is}	Remove "8" at the end of the 1st line. In the second line, second
		term should be $0.7/2.2$ instead of $0.7/0.2$. More accurate
		calculations give $\lambda_{Is} = 1.941$ and $k_t = 0.976$

219	Equation for λ_{Ie} := 0.4885	= 0.4907
281	Fig. 6.37 Caption: "electric motor for"	"electric motors for"
283	Fig. 6.40 Caption " Toyota Prius electric motor:"	"Toyota Prius 2004 electric motor:"
326	"Counterrotating", "counterrotation"	"Contra-rotating", "contra rotation"
327	Fig. 7.20 Caption, 1st and 2nd paragraphs: "counter-rotating"	"contra-rotating" (3 times)
403	Eqn (9.1) $\frac{P_{out}}{\pi D_{lin}^2 L_i} =$	$\frac{P_{out}}{\pi^2 D_{1in}^2 L_i} =$
427	1st equation $D_{1in} = \sqrt[3]{\frac{\varepsilon P_{out}}{0,75\pi k_{w1}n_s A_m \eta \cosh \phi}}$	$D_{1in} = \sqrt[3]{\frac{\varepsilon P_{out}}{0.75\pi^2 k_{w1} n_s A_m \eta \cos \phi}}$
427	1st equation, 2nd line denominator " $0.75\pi 0.96$ "	$0.75\pi^2 \times 0.96$
526	2nd and 3rd paragraph, eqns (14.9), (14.10) and (14.11) "MTFB"	"MTBF"
527	Table 14.1, top right corner and 3rd line from the bottom ofthe page: "MTFB"	"MTBF"
531	Equation for dynamic visciosity of air	$\mu_{dyn} = -2.1664 \times 10^{-11} 100^2 + 4.7336 \times 10^{-8} 100$
	$\rho = -2.1664 \times 10^{-11} 100^2 + 4.7336 \times 10^{-8} 100$ $+ 2 \times 10^{-} - 5 = 0.2452 \times 10^{-6} Pa s$	$+2 \times 10^{-5} = 0.2452 \times 10^{-6} Pa s$ See eqn (B.39).
561	Fig A.2d	missing h ₁₁
562	Errors in eqn (A.17):	$\pi/6+5/(16\pi)+h_{14}/b_{14} \cong 0.623+h_{14}/b_{14}$
	$\pi/6+\pi/(16\pi)+h_{24}/b_{24}\cong 0.623+h_{24}/b_{24}$	
561	Eqn (A.13) "++ $2h_{13}/(b_{11}+b_{14})$ " (double "+" sign)	$(+2h_{13}/(b_{11}+b_{14})))$
570	Eqn (B.25) : $\Delta P_{sl} =$	$\Delta P_{PM} =$

<u>Comment:</u> Pages 219 and 562. In eqn (A.19) the ratio l_{le}/L_i has been omitted because it appears in eq (A.30) on page 564. The end winding leakage permeance λ_{le} on page 219 contains l_{le}/L_i , because in calculation of X_l on the top of this page this ration has been removed.

Jacek F. Gieras, E-mail: jgieras@ieee.org