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Analysis of multilayer rotor induction motor with 
higher space harmonics taken into account 

Prof. J.F. Gieras, PhD 

Indexing terms: Induction motors, Electromagnetic theory 

Abstract: The paper presents a consistent electro- 
magnetic theory of a multilayer rotor induction 
motor with distributed parameters. Equations 
describing the two-dimensional field distribution 
in the rotor have been used to obtain recurrence 
relations for the resultant rotor impedance. These 
relations include the higher space harmonics pro- 
duced by the stator MMF curve. The classical T 
configuration equivalent circuit has been extended 
and adjusted to model a multilayer. rotor. 
Positive- and negative-sequence currents have 
been taken into account and impedances for 
forward- and backward-travelling field have been 
found. 

The method of the performance calculation for 
a multilayer rotor induction motor, including 
current assymetry and higher space harmonics, 
has been worked out. The approach presented 
may be helpful in the analysis and synthesis of 
induction machinery with specially constructed 
rotors (secondaries). The existing theory has been 
developed and generalised. 

List of principal symbols 

A 
a = exp (2jn/3) 
aRi , aXi = coefficients for resistance and reactance, taking 

into account magnetic permeability and hys- 
teresis losses, respectively 

= stator line current density 

B = magnetic flux density 
d 
E 

value 
F = force 
f = frequency 
9 = airgap 
H 
hFe 
I = electric current 
kc = Carter coefficient 
k,,, 

k ,  
k,,, 
k,, = primary winding factor 
kzvi 

= thickness of high conductivity layer 
= electric field strength, peak value; EMF, RMS 

= magnetic field strength, peak value 
= thickness of solid ferromagnetic core 

= Russell and Norsworthy factor for vth harmo- 

= saturation factor of magnetic circuit 
= impedance turns ratio for vth harmonic 

= impedance increase factor due to edge effect 
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= length of the stator core (in y-direction) 
= number of stator phases 
= number of stator turns per phase 
= speed in rev/s 
= airgap (electromagnetic) power 
= number of pole pairs 
= resistance 
= slip 
= torque 
= thickness of high conductivity layer behind fer- 

= linear velocity in m/s 
= length of rotor core (in y-direction) 
= length of high conductivity layer behind ferro- 

= reactance 
= impedance 
= surface wave impedance 
= complex propagation constant independent of 

= real constant, phase angle 
= complex propagation constant dependent on 

pole pitch 
= magnetic permeability (p,, = permeabiity of 

free space, prsi = relative surface permeability) 
= space harmonic of field distribution along pole 

pitch 
= electric conductivity 
= pole pitch 
= 2nf = angular frequency 

romagnetic core 

magnetic core (overhang) 

pole pitch 

Subscripts 

Cu 
d = developed 
dif = differential leakage 
Fe = steel (ferromagnetic) 
9 = airgap 
i 
in = input 
L =load 

C = common 
= copper (high conductivity layer) 

= 1, 2,. . . , k - 1, k = ith layer 

0 = characteristic impedance 
S = synchronous 

V = vth space harmonic 
t = total (resultant) 

= stator 1 
2 = rotor 

Superscripts 
( i  = 1, 2 , .  . . , k - 1, k) = number of layers of which 

the considered machine consists 
primed = value referred to the stator 
+ = positive-sequence (forward-travelling) 
- = negative-sequence (backward-travelling) 
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1 Introduction 

A general theory of electromechanical energy conversion 
can be derived from the electromagnetic field theory. The 
field theory enables us, in a straightforward way, to 
obtain equivalent impedances and to develop an equiva- 
lent circuit for induction machines with distributed 
parameters. Investigations in electromechanics, including 
some recent work, are oriented towards modelling induc- 
tion machines on the basis of the multilayer theory 
derived directly from the Maxwell field equations. 

Devices and problems that can be modelled in this 
way include induction motors with solid rotors, linear 
induction machines, induction pumps for liquid metals, 
eddy current couplings and brakes, electrodynamic and 
electromagnetic levitation systems, screens in supercon- 
ducting generators, nonmagnetic thin-cylinder induction 
motors, screened rotor induction motors, induction-type 
instruments etc. 

The idea of a one-dimensional multilayer theory was 
first introduced by Pipes [l], who obtained general for- 
mulas for the elements of a transfer matrix for any region. 
Greig and Freeman [24]  expanded the Pipes multilayer 
theory [l] and Cullen and Barton’s transmission line 
theory [7] to deduce an equivalent circuit for induction 
machines and low frequency induction devices. Each 
layer was replaced by a T equivalent circuit and the 
equivalent circuits for adjacent regions were connected in 
tandem. The impedances that constituted the T equiva- 
lent circuit of a particular region, were calculated from 
the physical parameters of that region alone. Transfer 
matrices were utilised in further work, e.g. References 8 
and 9. Other approaches to the analysis of stratified 
media are discussed in many papers [8, 10-163 

The main intention of this paper is to present a new 
method of analysis for induction machines with distrib- 
uted parameters, including space harmonics by combin- 
ing field and circuit theory. Any type of induction 
machine can be modelled by a T equivalent circuit in 
which the rotor (secondary) impedance and self- 
inductance reactance are obtained from electromagnetic 
field theory. In the multilayer model presented here, the 
normal limitations imposed by the amount of algebraic 
manipulation involved are removed by the use of recur- 
rence relations [13-151. 

2 Formulation of the problem 

The model of an induction machine with distributed 
parameters (Fig. 1) consists of an arbitrary number of 

2Pf 

layers i = k, where the first layer i = 1 is a halfspace. The 
numbers i > 1 correspond to successive layers with finite 
thicknesses. It is assumed that the regions are planar, the 
curvature of rotary machines is neglected, the anisotropy 
is ignored, the electric currents flow only in the x-  and 
y-directions and that the displacement currents are con- 
sidered negligible. The current sheet, infinitely thin in the 
z-direction, and the magnetic flux density in the airgap 
vary sinusoidally in the x-  and z-directions, and with the 
time. Each of the layers can be made of an arbitrary 
material, characterised by its magnetic and electric 
properties. 

The two-dimensional electromagnetic field distribution 
satisfies the Laplace equation in the ith nonconductive 
layer (air) 

VZH$$) = 0 V2E$!’ = 0 (1) 

and Helmholtz equation in the ith conductive layer 

V2#$’ = &y$$’ VZE‘k’ vi = avi 2 E‘!’ v i  (2) 

in which the complex propagation constant for the vth 
space harmonic is 

avi = (1 +j)(0.5 msvi~ioi)l’z (3) 

The slip svi corresponding to the vth harmonic of the 
stator MMF is 

(i) for the forward-travelling magnetic field 

s; = 1 - v(l - Si) (44 

(ii) for the backward-travelling magnetic field 

sv; = 1 + v( l  - Si) (4b) 

where the slip si corresponds to the fundamental harmo- 
nic. 

Magnetic properties of the layers are characterised by 
the complex magnetic permeability [17] : 

Pi = PO &si @i - R) (5)  

where prsi = relative surface permeability and po = 
permeability of free space. For both paramagnetic and 
diamagnetic layers pi = 1 and ,U: = 0. For ferromagnetic 
layers 

pi = aRiaXi pr = OS(& - aii) (6) 

The coefficients aRi and axi take into account magnetic 
saturation and hysteresis [17]. Variation of magnetic per- 
meability along the z-axis only is included. 

The equivalent electric conductivity 

Q! I = k re 6. I (7) 

includes so called ‘transverse edge effects’. The coefficient 
k,, < 1 of transverse edge effects has been derived 
amongst others by Russell and Norsworthy [18]. 

The general solution for eqns. 1 and 2 has the follow- 
ing Fourier series form: 

(i) For the forward-travelling field 

Fig. 1 
co-ordinate system for analysis of electromagnetic field 
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(ii) For the backward-travelling field 
00 CO 

Fjk'-(x, z, t )  = 2 F y ( X ,  z, t )  = 1 e . " i t + l v x )  

v =  1 v = l  

X [Cf:, Cy~ie-Xvi' + CtJi CtJieeXvi2] (8b) 

where Flk) =scalar projections of HIk) or EP' vectors 
parallel to the x-, y- and z-axes, respectively, and Clvi,  
C Z v i ,  Cjvi, C4vi = complex constants. 

The complex propagation constant, dependent on the 
pole pitch T, is 

rcVi = (avi + /?v)1'2 (9) 

in which 

/Iv = vn/z (10) 

The electric field components = 0 since the currents 
flow only in the x- and y-directions. For z -, CO, the field 
must vanish, so that for i = 1 (first layer) CikJiCfJi = 
C$Jl C!Jl = 0. The remaining constants cikii, C f J i ,  Cy;, 
and can be evaluated from the conditions V . #$) = 
0, V x 6;) = josVipi H$, from boundary conditions 
between the layers and from boundary conditions 
between the last layer i = k and the stator (primary) fer- 
romagnetic core (Appendix 9.1). In this way the final sol- 
ution for eqns. 1 and 2 can be obtained. It expresses the 
distribution of a 2D electromagnetic field in a multilayer 
structure and is given in References 13-15 as a set of 
recurrence relations. 

The unit impedance of a multilayer rotor (secondary), 
as shown in Fig. 1, is expressed as a ratio of tangential 
electric to magnetic components at z = 0, i.e. 

where 

or 

z(i! 
V I  

jWvi Pi 

Kvi 

1 jwv i  Pi +- w,i ( i - 1 )  
Z v i -  1 ovi- tanh (xVi  di) K , ~  

Eqn. 126 is similar to that expressing the input imped- 
ance of a transmission line (Appendix 9.2). Eqn. 13 relates 
to a model consisting of one layer of infinite thickness 
(i = 1). 

3 Impedance of multilayer rotor (secondary) 

By analogy to an open-circuited line (Appendix 9.2), the 
unit impedance zvi of a single layer with finite thickness di 
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can be found as a limit of z:! when (ovi/ovi- l)z$I\) -, CO, 
i.e. 

(14) jmvi Pi 1 z . = -  
' rcVi tanh ( ~ , ~ d ~ )  

Hence, eqn. 12b takes on a similar form to eqn. 47 and 
can be rewritten in the form 

o v i -  1 

It is not difficult to see that the impedance 

1 

zvi + 0,i z(i,- 1)  
V I -  1 

'"vi - 1 

is connected in series with zvi and in parallel with 
(wvJwvi - Jz:;;). The impedance zvi , given by eqn. 14, is a 
unit impedance of the ith layer with thickness di , whereas 
zvi according to eqn. 15 is a resultant unit impedance of 
the layers 1, 2,. . . , i. The first layer, with its unit imped- 
ance zvl = z::), is a halfspace. 

In a multilayer rotor induction machine a solid ferro- 
magnetic yoke or shaft can be regarded as a halfspace 
with unit impedance zvl .  In a multilayer secondary single- 
sided linear induction machine, an air half space for 
which vcV1 = 8, is regarded as the first layer (i = 1) with 
unit impedance zvl and unit resistance rvl + CO. The first 
layer is motionless. The second layer ( i  = 2) belongs to 
the secondary, which moves with slip s, = svi relative to 
the primary magnetic travelling field. Thus, ov2 = svw = 
s v o l .  For zvl -, CO, the unit impedance of a single-sided 
linear induction motor is 

In any induction machine, the last layer i = k is the 
airgap, for which K v k  = /?,, Pk = p o ,  dk = k ,  k,,g and 
s, '",k = s, w = wvk - 1. The real airgap g has to be multi- 
plied by the Carter factor k, 2 1 and the saturation 
factor k,, 2 1 of the magnetic circuit. Thus 

and 

The other layers 2 5 i 5 k - 1 usually run with the slip s, 
relative to the flux crossing the airgap and '",,k-l = 
'",k-2 = .  . . = 

If the length of the rotor (secondary in the y-direction 
is Li , the pole pitch is z an the impedance turns ratio is 

'"v2 - 
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the impedances (eqn. 15) referred to the stator (primary) 
are as follows : 

....................................... 

Z;;)(s,) = 
ZVi(SV) + z:;I;)(sv) 

z : ; ~ ; ) ( s v ) z v i ( s v )  
z$I;)(Sv) + z:i(s,) + 

....................................... 
z:;)(sv) = 0 + ZV2(SV) 

The primed variable means that the impedance Z$)(sv) is 
referred to the stator (primary) winding, i.e. Z:;)(s,) = 

Eqns. 19-21 yield the airgap impedance referred to the 
stator (primary) in a similar form to that in the classical 
theory of induction machines, i.e. 

krrv %!(sv)- 

(22) 

The impedance (eqn. 22) is independent of the slip s, and 
holds only the imaginary part x g v .  For v = 1 the above 
equation yields the self-inductance reactance, i.e. 

( N  k )’ Liz  
X ,  = 4m,p0 f- - 

P k c k a t g  

where kw, = winding factor for the fundamental harmo- 
nic. For v > 1, eqn. 20 yields the differential leakage 
inductive reactance: 

1 
Xldi, = c x,, = - x, c (+) (24) 

V Z l  k t1  v > l  

The impedances of the layers from i = 2 to i = k - 1, 
referred to the stator (primary), have the following 
general form : 

(25) 
Li js,opi 1 L. 

Z,,(S,) = k,,, ~ , i  v - = - 
z tcVi tanh ( K , ~  di) ktrv 

To take into account transverse edge effects, either eqn. 7 
or the impedance increase coefficient kzvi > 1 can be used. 
In the second case, the impedances (eqn. 25) should be 
multiplied by 

kzvi = 1 + 0.5 
V2Li 

The coefficient krvi can also take other forms, Reference 
19. The author recommends the equivalent electric con- 
ductivity (eqn. 7) for nonmagnetic layers and the coeffi- 
cient (eqn. 26) for ferromagnetic layers. 

Appendix 9.3 contains an example how to estimate the 
rotor impedance. 

If we let s, = s:, the impedance Zv:(s,?) corresponds 
to the forward-travelling field (positive sequence currents) 
and ifs, = s;, the impedance Zvf(sv-) corresponds to the 
backward-travelling field (negative sequence currents). 

4 Equivalent circuit 

All the impedances expressed by the formula 

qci = k i ,  zvci( v $Y 
where zvci is given by eqn. 16, should be regarded as so- 
called ‘common impedances’ of the ith layer and the lay- 
ers from i - 1 to i = 2. This is an analogy between an 
induction machine with distributed parameters and that 
with a double squirrel-cage rotor. In a double squirrel- 
cage machine, there is a rotor leakage flux that links the 
circuits of the upper and lower cages. The common 
inductive reactance corresponds to this flux. With a 
common end ring for both cages, there is also a common 
resistance. The impedances, eqns. 25 and 27 and 
Z J : I ; ) ( s v )  should be connected together in accordance 
with eqns. 21. Equivalent circuits of a multilayer rotor 
induction machine for the vth space harmonic (without 
the primary winding impedances) are shown in Fig. 2. 

I I 
C 

Fig. 2 
a Complete circuit model with common impedances 
b Model without common impedances 
c Model containing resultant rotor impedance 

Circuit models for multilayer rotor with distributed parameters 
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The circuit shown in Fig. 2a corresponds to the equiva- 
lent circuit of a multicage rotor induction motor. 

In case of a rotor (secondary) with distributed param- 
eters 

i.e. the common impedances Zvci can be neglected 
(Appendix 9.4). In this way, the equivalent circuit of Fig. 
2a can be simplified to that shown in Fig. 2b. It is a 
parallel circuit of k branches connected across a voltage 
s:EV, where E, is the EMF induced in the stator 
(primary) winding. Without doubt, this equivalent circuit 
can be used both in practical calculations and theoretical 
considerations. If we denote the equivalent impedance of 
the rotor (secondary) by Zzv (sv) = ZJiIt), the reciprocal 
of Z2,(sV)  fulfills the following relationship: 

1 1 1 
+- 

z ; v ( s v )  - Z v ,  - d s v )  zv, - z(sv) 
--- 

The rotor current I;,, ,  reduced to the stator circuit, is 
determined by the EMF E, and the equivalent imped- 
ance of the rotor circuit as follows: 

where R;,(s,) = Re [Z2,(s,)] and Xzv(sv)  = Im [Zz, (sv)]  
are the equivalent resistance and reactance of the rotor. 
Eqns. 29 and 30 allow us to modify the equivalent circuit 
shown in Fig. 2b to that of Fig. 2c. 

5 Equivalent circuit for induction motor under 
unbalanced conditions 

In the case of an unbalanced system of the input currents 
and no neutral wire, the result of the symmetrical com- 
ponents theory is that 

f 1;) 

where I:, = positive-sequence current, I;, = negative- 
sequence current, lYv = zero-sequence current, 
a = exp (2jn/3) and I,, , I,, , I,, = phase stator currents, 
expressed in phasor terms. The positive-sequence cur- 
rents l:, and negative-sequence currents Z l V  are discussed 
in Appendix 9.5. 

The equivalent circuits for positive-sequence and 
negative-sequence components are presented in Fig. 3. 
According to Reference 20, any induction motor can be 
represented by a series of mechanically connected motors 
having a different number 2vp of poles the stator wind- 
ings of which are connected in series. The impedance of 
the stator winding is taken into account during consider- 
ation of the winding resistances and leakage reactances of 
the slots and end connections. Any vth rotor is character- 
ised by a mutual inductance representing the self- 
inductance reactance X, ,  . The coefficient of coupling 
between the stator and the rotor for v > 1 is assumed to 
be equal to 1. The impedance of the vth rotor referred to 
the stator is Zzv , where the real part represents its resist- 
ance and the imaginary part represents its leakage reac- 
tance. 

The slip corresponding to higher space harmonics 
(Fig. 3) is expressed by formula 4a if v = 1, 7, 13, ... 
(positive sequence) and v = 5, 11, 17, ... (negative 
sequence). The slip is expressed by formula 4b if v = 5, 11, 
17, . . . (positive sequence) and v = 1, 7, 13, . . . (negative 
sequence). For the negative-sequence components, the 
forward-travelling magnetic field moves backwards. 

For a balanced current system, i.e. 1 I,, I = I = 
I I,, 1, the positive-sequence component I:, = 1 I, 1 and 
the negative-sequence component 1, = 0. This makes the 
branch b of the equivalent circuit shown in Fig. 3 vanish. 

The equivalent circuit of Fig. 3 may be also helpful in 
the analysis of the longitudinal end effect in a linear 

I I 
Fig. 3 
a For positive-sequence current 
b For negative-sequence current 

Equivalent circuits for multilayer rotor induction motor under unbalanced conditions 
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induction motor. The unbalanced currents in linear 
induction motors are among those caused by this effect. 

The slip corresponding to a synchronous speed nsv (in 
revfmin) or v,, (in m/s) can be determined by understand- 
ing that the pole pitch z, for the vth space harmonic is v 
times smaller than the pole pitch z for the fundamental, 
i.e. 

z = z/v (32) 
I nsv I = ndv (334 

IUS I = V J V  (334 
where n, and U, = synchronous speed for v = 1. Hence 

1 
s,, = 1 * - (34) 

In the case of positive-sequence components I:, = 
I;, = I:, = . . . = Z:, the ‘-’ sign (ssv < 1, nsv > 0) is 
for v = 1, 7, 13, . . . and the ‘+’ sign (ssv > 1, nsv < 1) is for 
v = 5, 11, 17, .... In the case of negative-sequence com- 
ponents I;, = I:, = I , ,  = . . . = Z;, the ‘-’sign is for 
v = 5 ,  11, 17, . . . , and the ‘+’ sign is for v = 1, 7, 13, . . . . If 
v + 00 then s,, -, 1. 

V 

6 Performance 

To calculate the performance characteristics of a multi- 
layer rotor induction motor under unbalanced condi- 
tions, it is necessary to find the airgap induced voltages 
(EMFs) 1 E:, I and I ETv I and the airgap powers P A  and 
Pg; for each of the space harmonics separately. The RMS 
EMFs 

can be calculated as voltage drops across the impedance 

The resistance R;,(sv)/s, absorbs the total power crossing 
the airgap, i.e. 

(374  
(374 

where the rotor RMS currents IZ;; I and IZ;; I are 
expressed by eqn. 30. If the airgap powers are known, the 
forces 

Fd+v = p,:/v; ( 3 8 4  

Fdv = P,;/V, (38b) 

TA = P,:/(2nn,:) (394 

Tdv = Pg;/(2nnsJ (39b) 

and torques 

developed by the electromagnetic energy conversion 
process can be found. 

The forces (eqns. 38a and b) or torques (eqns. 39a and 
b) are positive or negative since the airgap powers (eqns. 
37a and b) are dependent on slip, which can be positive 
or negative. 

The resultant developed force and torque 

Td = c (TA + Ti.) (41) 
V 

Fig. 4 shows the torques T A  and T& as functions of 
slip for v = 1, 5 and 7. 

7 Conclusions 

A field analysis is shown to be capable of accurately 
modelling the induction machines with distributed 
parameters. Considerations presented here can be helpful 
in the analysis and synthesis of induction machinery with 
specially constructed rotors (secondaries). 

The multiregion problem in induction machines, dis- 
cussed here, is the general case for a wide variety of 
special cases, e.g. solid rotor induction motors, induction 

I \ ! O S  0 6  0 4  0 2  \ O  S - I 
1 ------ 

Fig. 4 
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Torque-slip curves for higher time harmonics v = 1,5 and 7 
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9 

10 

11 

12 

13 

14 

15 

motors with screened rotors, low-inertia servo motors, 
linear induction motors, eddy-current brakes and coup- 
lings, magnetic levitation devices etc. The field theory 
allows us to develop an equivalent circuit for any induc- 
tion machine. In the case of a rotor with distributed 
parameters, the field theory is equivalent to the circuit 
theory. The electromagnetic field equations determine 
both the impedance of the rotor and the impedance of 
the airgap. This paper shows how to separate the imped- 
ance for each layer, and the self-inductance reactance, 
and how to determine the differential leakage reactance. 

The equivalent circuit for a multilayer rotor induction 
motor can be easily adjusted for the analysis of a single- 
sided linear induction motor by including the longitudi- 
nal end effect impedance [21,22]. 

To calculate the performance of various kinds of 
induction machines with distributed parameters, a 
general computer program can be constructed. 
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Appendixes 

9.1 Boundary conditions 
The magnetic field distribution at the boundary z = 0 
can be found on the basis of 
(a) AmpkrZs circuital law and an amperian closed path 
(non-salient-pole machines): 

HfJk+(x, 0, t )  = -A:  exp [ j ( o s i  t - 8, x )  

H$,!),-(x, 0, t )  = -Av- exp [j(osv: t + 8, x )  (42) 
(b) the equality of normal components of magnetic flux 
(salient-pole machines) 

p o  HL21,’(x, 0, t )  = B: exp [ j ( o s ;  t - Bv x )  

p o  H!t\-(x, 0, t )  = B; exp [j(osv; t + 8, x )  (43) 
where A: and A; = peak values of the vth harmonics of 
the stator line current density and B: and Bv- = peak 
values of the vth harmonics of the airgap magnetic flux 
density (normal components). 

The application of other boundary conditions yields 
(i) Z = dk 

Hf,!k(& dk , t )  = H?,!k- dk > t )  

Pk H!:\(X, dk, t )  = Pk- 1 HLyk- 1 ( X ,  dk, t )  (44) 
k 

(ii) z = 1 d ,  
i = k - 1  

k k 

di 9 t )  = HfJk - ~ ( x ,  
i = k - 1  i = k - 1  

H f J k  - I(X, 1 di , t )  

................................................... 
k 

(iii) z = di  
i = 2  

Moreover, for z 
42 and 44-46 or 43 and 44-46 allow to find all the con- 
stants CikJi, CC,Ji, C$Ji and CfJ,. Some details are given in 
the references [ 13-1 51. 

00 CikJ, C f J l  = CTJ, C f J l  

(45) 
.............. 

(46) 

= 0. Eqns. 

92  Analogy to transmission line 
If we let z$\ = j o v i p J x v i  and zfv- ’) = (ovJovi- &z:L;), 
eqn. 12b has the same form as that expressing the input 
impedance zev of a transmission line [23] at a distance di  
from the load, i.e. 

z(i) = z(i) + z$? tanh ( ~ , ~ d ~ )  
zov + zf;’) tanh (Kvidi) m v  Ov (i) 

+ .Aiv- 1) 

tanh ( ~ ~ ~ d ~ )  

(47) 
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where z$t = characteristic impedance of the line, zfV-') = 
load impedance. 

The characteristic impedance, by anaology to electro- 
magnetic wave propagation, is referred to as the propa- 
gation constant divided by the electric conductivity, i.e. 

If zfV-') + 00 is substituted, eqn. 47 gives the input 
impedance of an open-circuited line [23] : 

Z$\ 
z(i) = 

tanh (rcVidi) invw (49) 

and if zf,-l) = 0 is substituted, we get the input imped- 
ance of a shorted line [23] : 

(50) z ( i )  - z ( i )  
rnvsh - Ov tanh (%idi) 

9.3 Rotor impedance estimation 
As an example, a double-layer low-inertia rotor with dis- 
tributed parameters, as shown in Fig. 5, has been con- 
sidered. In fact, the impedance of the copper layer and 
the impedance of the solid steel ring contribute only to 

The tranverse edge effect in the solid steel ring has been 
included in correction factor k,, , see eqn. 26. 

Similar equations to 51 and 52 are valid for the impe- 
dance of a single-sided linear induction motor (high con- 
ductivity cap over solid back iron)[22]. 

9.4 Simplification of equivalent circuit 
The second term ( jwv ipJ~ ,J2  in the numerator of eqn. 15 
is zvi squared when di + 00. By taking the limit of eqn. 14 
as di -, CO, we obtain the unit impedance zVi = jq,ip&i 
of a halfspace. The impedance of a halfspace to the 
second power, divided by zVi + (wvJwvi- l)z$li) must be 
much smaller than that of parallel-connected of layers 
with finite thicknesses. Hence, ( jwvipJKvi) 4 
z,i(ovJwvi - l)zt;\). It can be visualised by considering an 
induction motor with for example, 7 = 0.05 m, k,  k,, g = 
0.001 m, X ,  = 100R and Z 2 / s  = (2 /s  +j3)Q. For an 
induction (avi pJbv) a X, ,  tanh (8, k,  k,,, g) N 

XgVBv k,  k,,g. If v = 1, the product X,Bkc k,, g = 100n, 
0.001/0.05 = 6.28 0. For a rotor under short circuit 
conditions, impedance Z 2 / s  = ( 2  + j3) R, ratio 
X,Bk,  k,,g/( Z ;  I = 1.74 and product X ,  lZ2 I = 360 R2. 
Now, (X,Bk,  k,, g)' = 39.4 R2 is much smaller than 
X, I Z2 I. Ifs = 0.03, X ,  I Z2 I = 6673.4 R2. 

motor, 

d c  
I / /  I 

I I 

I 
wov W wov 

1 1  

Fig. 5 
a Steel shaft 
b Epoxide resin bush 
c Steel ring 
d Copper cap 

Double-layer low-inertia rotor with distributed parameters 

the equivalent impedance of the rotor, which is given by 
eqn. 29. 

Eqn. 25 allows us to estimate the impedance of the 
copper layer 

With the application of the concept of transmission 
line, the eqn. 16 yields 

(jmvi 
z,i + (wvJwvi- l)z:il:) 

and the impedance of the solid steel ring (core) 

where pFe is given by eqn. 5, xvFe and xvr, are given by 
eqn. 9, k,,, is given by eqn. 20 and kzv is given by eqn. 26. 

The electrical conductivity of the steel cylinder is bFe, 

and the electrical conductivity of the copper layer is 
okUv = ktevcrc,, where ktev < 1 is the Russell and Nors- 
worthy correction factor, used for the edge effect in the 
high conductivity nonmagnetic layer, i.e. 

k,,, = 1 - 

in which 

k,  = 1 + 1.3(tou - d)/d (54) 

- [ Z $ y  
- 

z$?/tanh ( K , ~  di) + zfv- ') 

Since the input impedance of a shorted line (eqn. 50) is 
very small, and, divided by the load impedance zf,-'), 
becomes much smaller, the value given by eqn. 55 is neg- 
ligibly small. 

9.5 Positive and negative sequence currents for U > 1 
The phase currents in the phasor terms (eqn. 31) are 

11, = I I i A I L B A ,  I ~ B = I I ~ B I L B B  

11, = I ~ l C I L B L  I I l A l 9  l I l B l 9  I I l C I  = RMS 
phase currents. If there is no is neutral wire, the zero- 
sequence current I:,, = 0. 

For v = 2 m 1  k + l ,  where k = 0 ,  1, 2, 3, ..., the 
complex factors ay = a and a'' = a', for 2 m 1 k  - 1, 
where k = 1, 2, 3, ..., the complex factor av = a' and 
a2v - - a and for v = 2m1k + 3, where k = 0, 1, 2, 3, ..., 

= a3 = 1. 
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In the case of unequal phase currents I , ,  # I , ,  # I , , ,  (i) for v = 6 k  -+ 1 
the followinn eaualities arise 

In the case of a balanced system, i.e. 1 I , ,  I = I I , ,  I = 
lI,cl=lZll, b ~ = 0 ,  Be=120" and bc=2400, the 
positive- and negative-sequence currents are equal to 

(ii) for ' = 6k - 
I ;  5 = II', 1 1  = ZI', 17 = * a *  = O 

I ;* 5 = I : * , ,  = I;* 17 = * * = I I 1 1 RMS phase current I , ,  i.e. 

IEE PROCEEDINGS-B, Vol. 138, NO. 2, MARCH 199I 

(58) 

(59) 
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