Calculation of the Steady State Performance for Small Commutator Permanent Magnet DC Motors: Classical and Finite Element Approaches

Mitchell Wing and Jacek F. Gieras, Senior Member, IEEE

Abstract—Two methods of calculating the steady-state performance of small commutator permanent magnet dc motors are presented here. The finite element and classical methods have been used and compared with experimental data for an 8-W dc motor with segmental permanent magnets. The results have revealed the accuracy and shortcomings of the two methods. The cogging torque calculated using the finite element technique has also been analyzed.

I. INTRODUCTION

PERMANENT magnet (PM) dc commutator motors have outstanding performance for use in automated manufacturing systems, automobiles, office machines, drives, tools, medical equipment, home appliances etc. Since these machines are manufactured in many different shapes and in large quantities, reliable calculation methods and powerful computer software are required for design purposes.

An attempt has been made to study the steady-state performance of a small PM dc motor obtained using two distinct methods: 1) a classical (circuital) approach including analytical approximations of the demagnetization curve and permeance lines to locate the operating point of the permanent magnet, and 2) a finite element technique. PC-based computer software has been used for these two approaches. The cogging torque calculated using the finite element method has also been discussed. The calculated results are compared with those obtained from experimental tests.

II. CLASSICAL ANALYSIS

Permanent magnets operate on the demagnetization curve of the hysteresis loop, in the upper left-hand quadrant. (Fig. 1(a)) The demagnetization curve for the majority of hard magnetic materials can be described analytically using, for example, an equation for a hyperbola [1]. To calculate the operating point of a permanent magnet, an equivalent magnetic circuit per pole pair is used. (Fig. 1(b)) The various leakages are lumped into an equivalent leakage flux Φ_l in a path of permanence λ_l. The useful flux Φ_u in the gap permanence λ_u and with an armature reaction (MMF) F_a, occupies a parallel path. The “open circuit” MMF, F_0, acting through a permanence λ_0, occupies another parallel path. All the paths with λ_l, λ_u, and λ_0 are in parallel.

The magnetic field intensity corresponding to the MMF of the armature reaction is

$$H_a = \frac{F_a}{h_m}, \quad (1)$$

where h_m is the height of the PM. The useful magnetic

Fig. 1. Finding the operating point of a permanent magnet system. (a) Demagnetization curve and permeance lines. (b) Equivalent magnetic circuit.
The two-dimensional model used in this simulation is a general approach is unreliable. On the other hand (3) has been suc-

tional, i.e., $A_0 = L_0(x, y)$ with a resultant axially directed magnetic vector potential, i.e., $A = \mathbf{A}(x, y)$ where $\mathbf{A}_0 = 0$, $\mathbf{A}_y = 0$, \mathbf{A}_r are unit vectors. The nonlinear Poisson’s equation subject to the boundary conditions has been solved numerically [3], [4], [5].

The developed output torque is calculated using the method of virtual work [6], [7], [8], i.e.:

$$T(\theta) = \frac{W(\theta + \Delta \theta) - W(\theta)}{\Delta \theta} * MF * L_m, \tag{3}$$

where W is the coenergy, θ is the rotor angle in radians ($A\theta$ typically 0.2 degrees), MF is the model factor, L_m is the effective length of the rotor stack. The model factor $MF = 2$ for a half model simulated and $MF = 4$ for a quarter model. Some authors, e.g., [6], say that this approach is unreliable. On the other hand (3) has been successfully used by many researchers, e.g., [7], [8], [9].

The mechanical output torque is calculated from the developed electromagnetic torque subtracting the torque corresponding to the rotational losses.

The armature core losses have been neglected, due to their insignificance in the general performance character-

istics. The rotor angular speed is calculated from as:

$$\Omega = \frac{(V - i\Sigma R_a - V_{br})}{L} \tag{4}$$

where ΣR_a is the resistance of the armature circuit.

IV. RESULTS

The design data of the motor are shown in Table I. The results from classical machine theory and the finite element technique are both compared against experimental results. The finite element mesh for the analyzed 8-W motor is shown in Fig. 2. The magnetic flux distribution using the finite element method is shown in Fig. 3(a) and Fig. 3(b). The torque versus armature current, input power, output power and efficiency are shown in Figs. 4–7. Cogging torque versus rotor angle is plotted in Fig. 8.

The material characteristics, including the demagnetization curve of the PM, are set within the programs. The silicon steel of the rotor and the mild steel of the stator yoke (frame) are both analyzed as being nonlinear.

A. Classical Calculation

The graphs shown in Figs. 4–7 show discrepancies between the results of the classical approach and the experiments. The greater errors occurred in the input parameters like input power and armature current with errors of up to 49%.

The deviations in the results can be attributed to a number of possible reasons. The two most prominent reasons for the errors are 1) the classical method of calculation is based on a one-dimensional model. For small electrical machines the edge effects are significant and cannot be neglected. 2) the magnetic flux density versus magnetic field intensity (B–H) curve, for the PM, supplied with the motor is a general B–H curve for this type of magnetic material given in a catalog and may not truly represent the B–H curve of this specific magnet used in the motor. 3) The operating point on the demagnetization B–H curve of the PM is affected by the armature reaction (MMF) which is not accurately taken into account [1].

B. The Finite Element Simulation Results

The outer boundary of the stator yoke has been set to $A = 0$, using single point constraints (SPC) on all the outer nodes. A periodic boundary condition is set up one pole pitch apart, with a value of -1. This is called a multipoint constraint (MPC).

The load is applied as a constant current density in the elements that represent the slots. The load represents the forcing function within the functional energy equation of the model.

The developed torque is calculated by rotating the rotor through 18 steps. Every second increment is only stepped half a degree. This means that the torque is calculated for 9 specific rotor positions at five-degree intervals.

The two dimensional model used in this simulation is in some respects an over simplification. This applies par-
TABLE I
DESIGN DATA OF A SMALL DC PERMANENT MAGNET MOTOR DRIVING AN AUTOMOBILE BLOWER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>$P_{out} = 8$ W</td>
</tr>
<tr>
<td>Terminal voltage</td>
<td>$V = 24$ V</td>
</tr>
<tr>
<td>Number of pole pairs</td>
<td>$p = 1$</td>
</tr>
<tr>
<td>Number of parallel path pairs</td>
<td>$a = 1$</td>
</tr>
<tr>
<td>Outer diameter of rotor</td>
<td>$D_{out} = 41$ mm</td>
</tr>
<tr>
<td>Airgap</td>
<td>$g = 0.7$ mm</td>
</tr>
<tr>
<td>Thickness of stator yoke</td>
<td>$d = 1.5$ mm</td>
</tr>
<tr>
<td>Height of permanent magnet</td>
<td>$h_m = 8$ mm</td>
</tr>
<tr>
<td>Length of permanent magnet</td>
<td>$L_m = 25$ mm</td>
</tr>
<tr>
<td>Overlap angle of magnet (Fig. 8)</td>
<td>$\beta = 1.832$ rad</td>
</tr>
<tr>
<td>Number of armature turns</td>
<td>$N = 1120$</td>
</tr>
<tr>
<td>Number of armature slots</td>
<td>$Z_s = 8$</td>
</tr>
<tr>
<td>Number of commutator segments</td>
<td>$K = 8$</td>
</tr>
<tr>
<td>Stacking factor</td>
<td>$k_i = 0.96$</td>
</tr>
</tbody>
</table>

Fig. 2. Finite element mesh of dc permanent magnet motor used by finite element program.

Fig. 3. Flux distribution of 8-W dc motor obtained by finite element technique. (a) No load armature current. (b) Stopped rotor armature current.

Fig. 4. Armature current versus output torque. 1: text results. 2: Circuital method. 3: Finite element technique.

Fig. 5. Output power versus output torque. 1: Text results. 2: Circuital method. 3: Finite element technique.

Fig. 6. Input power versus output torque. 1: Text results. 2: Circuital method. 3: Finite element technique.
The finite element model is a two-dimensional model and for this reason the stator yoke of the motor had to be thickened to take into account the yoke magnetic flux paths outside the permanent magnet [10]. This could lead to the MMF not being accurately calculated and thus an error in the results. 2) The B–H curve approximation is not accurate. 3) The current density within the slots is assumed to be constant and the slots are simulated as single layer windings although, whereas in fact, they are double layer windings. 4) Evaluation of losses is not accurate.

C. Cogging Torque

Small dc motors with slotted rotors show a torque ripple, called cogging. The fewer the slots, the greater the magnetic flux pulsations and cogging torque. The cogging effect is particularly undesirable when a motor runs at low speeds. The considered motor has 8 slots in the rotor. The cogging torque is seen to have the greatest influence at low armature currents, varying up to 90% of the average torque, and having less influence close to rated current of up to 60% of the average torque. Since the number of slots in the rotor is small, the torque ripple is significant.

V. Conclusion

The results show that the finite element technique has a better accuracy over the classical method in calculating the torque using the virtual work principle, armature current, input power, and efficiency of small PM motors. Only the output power–torque characteristics are more accurate using the circuital approach. The cogging torque can be calculated easily using the finite element technique. The classical method is, however, much quicker and efficient at finding the performance characteristics and the time saved may outweigh the extra time spend using the finite element technique.

REFERENCES

He is presently a Research Assistant studying towards his M.Sc. in electrical engineering at the University of Cape Town. His research area is finite element analysis and dc PM electrical motors.

Jacek F. Gieras, (M’84–SM’91) received the M.Sc. degree in electrical engineering from the Technical University of Lodz, Poland, the Dr.-Eng. and Dr. habil. degrees, also in electrical engineering, from the Technical University of Poznan, Poland, in 1971, 1975, and 1980, respectively. He joined the Department of Electrical and Electronic Engineering at the University of Cape Town, Rondebosch, South Africa, in September 1989. His research area is electrical machinery, electromagnetic devices, and electromagnetic field theory. The most extensive research pertains to linear induction motors. He is an author or co-author of more than 100 scientific and technical papers published in many countries, including the USA, the United Kingdom, Germany, and Japan. He has taught and done research in Poland, Czechoslovakia, Canada, and Jordan. In 1987 he was promoted, in Poland, to the rank of Professor.