Gieras J.F.

Table 2.1: Continued		
System	Configuration of poles	Permeance
10		Cylindrical space between two salient poles without a rotor $G = \mu_o l_M \int_0^\Theta \frac{\tan \alpha}{\alpha} d\alpha$ To take into account the fringing flux the permeance should be increased by 10 to 15%
11	h Wm Ym	Between a cylinder parallel to the salient pole with rectangular cross section at $w_M > 4h$ $G = \mu_o \frac{\pi}{\ln{(2n+\sqrt{4n^2-1})}} l_M$ where $n = h/(2r)$. For $w_M = (1.252.5)h$ the permeance G should be multiplied by the correction factor $0.850.92$
12	h	A cylinder located parallely and symetrically between two salient poles of rectangular cross section $G = \mu_o \frac{(1.251.40)\pi}{\ln{(2n+\sqrt{4n^2-1})}} l_M$ where $n = h/(2r)$
13	h m	Between two parallel cylinders of different diameters $G = \mu_o \frac{2\pi}{\ln{(u+\sqrt{u^2-1})}}$ where $u = \frac{h^2 - r_1^2 - r_2^2}{2r_1r_2}$